3.1.29 \(\int \cos (c+d x) (a+a \cos (c+d x))^4 (A+B \cos (c+d x)) \, dx\) [29]

3.1.29.1 Optimal result
3.1.29.2 Mathematica [A] (verified)
3.1.29.3 Rubi [A] (verified)
3.1.29.4 Maple [A] (verified)
3.1.29.5 Fricas [A] (verification not implemented)
3.1.29.6 Sympy [B] (verification not implemented)
3.1.29.7 Maxima [A] (verification not implemented)
3.1.29.8 Giac [A] (verification not implemented)
3.1.29.9 Mupad [B] (verification not implemented)

3.1.29.1 Optimal result

Integrand size = 29, antiderivative size = 185 \[ \int \cos (c+d x) (a+a \cos (c+d x))^4 (A+B \cos (c+d x)) \, dx=\frac {7}{16} a^4 (8 A+7 B) x+\frac {4 a^4 (8 A+7 B) \sin (c+d x)}{5 d}+\frac {27 a^4 (8 A+7 B) \cos (c+d x) \sin (c+d x)}{80 d}+\frac {a^4 (8 A+7 B) \cos ^3(c+d x) \sin (c+d x)}{40 d}+\frac {(6 A-B) (a+a \cos (c+d x))^4 \sin (c+d x)}{30 d}+\frac {B (a+a \cos (c+d x))^5 \sin (c+d x)}{6 a d}-\frac {2 a^4 (8 A+7 B) \sin ^3(c+d x)}{15 d} \]

output
7/16*a^4*(8*A+7*B)*x+4/5*a^4*(8*A+7*B)*sin(d*x+c)/d+27/80*a^4*(8*A+7*B)*co 
s(d*x+c)*sin(d*x+c)/d+1/40*a^4*(8*A+7*B)*cos(d*x+c)^3*sin(d*x+c)/d+1/30*(6 
*A-B)*(a+a*cos(d*x+c))^4*sin(d*x+c)/d+1/6*B*(a+a*cos(d*x+c))^5*sin(d*x+c)/ 
a/d-2/15*a^4*(8*A+7*B)*sin(d*x+c)^3/d
 
3.1.29.2 Mathematica [A] (verified)

Time = 0.27 (sec) , antiderivative size = 134, normalized size of antiderivative = 0.72 \[ \int \cos (c+d x) (a+a \cos (c+d x))^4 (A+B \cos (c+d x)) \, dx=\frac {a^4 (2940 B c+3360 A d x+2940 B d x+120 (49 A+44 B) \sin (c+d x)+15 (128 A+127 B) \sin (2 (c+d x))+580 A \sin (3 (c+d x))+720 B \sin (3 (c+d x))+120 A \sin (4 (c+d x))+225 B \sin (4 (c+d x))+12 A \sin (5 (c+d x))+48 B \sin (5 (c+d x))+5 B \sin (6 (c+d x)))}{960 d} \]

input
Integrate[Cos[c + d*x]*(a + a*Cos[c + d*x])^4*(A + B*Cos[c + d*x]),x]
 
output
(a^4*(2940*B*c + 3360*A*d*x + 2940*B*d*x + 120*(49*A + 44*B)*Sin[c + d*x] 
+ 15*(128*A + 127*B)*Sin[2*(c + d*x)] + 580*A*Sin[3*(c + d*x)] + 720*B*Sin 
[3*(c + d*x)] + 120*A*Sin[4*(c + d*x)] + 225*B*Sin[4*(c + d*x)] + 12*A*Sin 
[5*(c + d*x)] + 48*B*Sin[5*(c + d*x)] + 5*B*Sin[6*(c + d*x)]))/(960*d)
 
3.1.29.3 Rubi [A] (verified)

Time = 0.66 (sec) , antiderivative size = 170, normalized size of antiderivative = 0.92, number of steps used = 9, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.310, Rules used = {3042, 3447, 3042, 3502, 3042, 3230, 3042, 3124, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \cos (c+d x) (a \cos (c+d x)+a)^4 (A+B \cos (c+d x)) \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \sin \left (c+d x+\frac {\pi }{2}\right ) \left (a \sin \left (c+d x+\frac {\pi }{2}\right )+a\right )^4 \left (A+B \sin \left (c+d x+\frac {\pi }{2}\right )\right )dx\)

\(\Big \downarrow \) 3447

\(\displaystyle \int (a \cos (c+d x)+a)^4 \left (A \cos (c+d x)+B \cos ^2(c+d x)\right )dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \left (a \sin \left (c+d x+\frac {\pi }{2}\right )+a\right )^4 \left (A \sin \left (c+d x+\frac {\pi }{2}\right )+B \sin \left (c+d x+\frac {\pi }{2}\right )^2\right )dx\)

\(\Big \downarrow \) 3502

\(\displaystyle \frac {\int (\cos (c+d x) a+a)^4 (5 a B+a (6 A-B) \cos (c+d x))dx}{6 a}+\frac {B \sin (c+d x) (a \cos (c+d x)+a)^5}{6 a d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \left (\sin \left (c+d x+\frac {\pi }{2}\right ) a+a\right )^4 \left (5 a B+a (6 A-B) \sin \left (c+d x+\frac {\pi }{2}\right )\right )dx}{6 a}+\frac {B \sin (c+d x) (a \cos (c+d x)+a)^5}{6 a d}\)

\(\Big \downarrow \) 3230

\(\displaystyle \frac {\frac {3}{5} a (8 A+7 B) \int (\cos (c+d x) a+a)^4dx+\frac {a (6 A-B) \sin (c+d x) (a \cos (c+d x)+a)^4}{5 d}}{6 a}+\frac {B \sin (c+d x) (a \cos (c+d x)+a)^5}{6 a d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {3}{5} a (8 A+7 B) \int \left (\sin \left (c+d x+\frac {\pi }{2}\right ) a+a\right )^4dx+\frac {a (6 A-B) \sin (c+d x) (a \cos (c+d x)+a)^4}{5 d}}{6 a}+\frac {B \sin (c+d x) (a \cos (c+d x)+a)^5}{6 a d}\)

\(\Big \downarrow \) 3124

\(\displaystyle \frac {\frac {3}{5} a (8 A+7 B) \int \left (\cos ^4(c+d x) a^4+4 \cos ^3(c+d x) a^4+6 \cos ^2(c+d x) a^4+4 \cos (c+d x) a^4+a^4\right )dx+\frac {a (6 A-B) \sin (c+d x) (a \cos (c+d x)+a)^4}{5 d}}{6 a}+\frac {B \sin (c+d x) (a \cos (c+d x)+a)^5}{6 a d}\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {\frac {3}{5} a (8 A+7 B) \left (-\frac {4 a^4 \sin ^3(c+d x)}{3 d}+\frac {8 a^4 \sin (c+d x)}{d}+\frac {a^4 \sin (c+d x) \cos ^3(c+d x)}{4 d}+\frac {27 a^4 \sin (c+d x) \cos (c+d x)}{8 d}+\frac {35 a^4 x}{8}\right )+\frac {a (6 A-B) \sin (c+d x) (a \cos (c+d x)+a)^4}{5 d}}{6 a}+\frac {B \sin (c+d x) (a \cos (c+d x)+a)^5}{6 a d}\)

input
Int[Cos[c + d*x]*(a + a*Cos[c + d*x])^4*(A + B*Cos[c + d*x]),x]
 
output
(B*(a + a*Cos[c + d*x])^5*Sin[c + d*x])/(6*a*d) + ((a*(6*A - B)*(a + a*Cos 
[c + d*x])^4*Sin[c + d*x])/(5*d) + (3*a*(8*A + 7*B)*((35*a^4*x)/8 + (8*a^4 
*Sin[c + d*x])/d + (27*a^4*Cos[c + d*x]*Sin[c + d*x])/(8*d) + (a^4*Cos[c + 
 d*x]^3*Sin[c + d*x])/(4*d) - (4*a^4*Sin[c + d*x]^3)/(3*d)))/5)/(6*a)
 

3.1.29.3.1 Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3124
Int[((a_) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Int[ExpandTri 
g[(a + b*sin[c + d*x])^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && EqQ[a^2 - 
b^2, 0] && IGtQ[n, 0]
 

rule 3230
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + 
(f_.)*(x_)]), x_Symbol] :> Simp[(-d)*Cos[e + f*x]*((a + b*Sin[e + f*x])^m/( 
f*(m + 1))), x] + Simp[(a*d*m + b*c*(m + 1))/(b*(m + 1))   Int[(a + b*Sin[e 
 + f*x])^m, x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[b*c - a*d, 0] 
&& EqQ[a^2 - b^2, 0] &&  !LtQ[m, -2^(-1)]
 

rule 3447
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) 
+ (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Int[(a 
 + b*Sin[e + f*x])^m*(A*c + (B*c + A*d)*Sin[e + f*x] + B*d*Sin[e + f*x]^2), 
 x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0]
 

rule 3502
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) 
+ (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-C)*Co 
s[e + f*x]*((a + b*Sin[e + f*x])^(m + 1)/(b*f*(m + 2))), x] + Simp[1/(b*(m 
+ 2))   Int[(a + b*Sin[e + f*x])^m*Simp[A*b*(m + 2) + b*C*(m + 1) + (b*B*(m 
 + 2) - a*C)*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, e, f, A, B, C, m}, x] 
 &&  !LtQ[m, -1]
 
3.1.29.4 Maple [A] (verified)

Time = 4.10 (sec) , antiderivative size = 111, normalized size of antiderivative = 0.60

method result size
parallelrisch \(\frac {\left (\left (16 A +\frac {127 B}{8}\right ) \sin \left (2 d x +2 c \right )+\left (\frac {29 A}{6}+6 B \right ) \sin \left (3 d x +3 c \right )+\left (A +\frac {15 B}{8}\right ) \sin \left (4 d x +4 c \right )+\left (\frac {A}{10}+\frac {2 B}{5}\right ) \sin \left (5 d x +5 c \right )+\frac {B \sin \left (6 d x +6 c \right )}{24}+\left (49 A +44 B \right ) \sin \left (d x +c \right )+28 d x \left (A +\frac {7 B}{8}\right )\right ) a^{4}}{8 d}\) \(111\)
risch \(\frac {7 a^{4} x A}{2}+\frac {49 a^{4} B x}{16}+\frac {49 \sin \left (d x +c \right ) a^{4} A}{8 d}+\frac {11 \sin \left (d x +c \right ) B \,a^{4}}{2 d}+\frac {\sin \left (6 d x +6 c \right ) B \,a^{4}}{192 d}+\frac {\sin \left (5 d x +5 c \right ) a^{4} A}{80 d}+\frac {\sin \left (5 d x +5 c \right ) B \,a^{4}}{20 d}+\frac {\sin \left (4 d x +4 c \right ) a^{4} A}{8 d}+\frac {15 \sin \left (4 d x +4 c \right ) B \,a^{4}}{64 d}+\frac {29 \sin \left (3 d x +3 c \right ) a^{4} A}{48 d}+\frac {3 \sin \left (3 d x +3 c \right ) B \,a^{4}}{4 d}+\frac {2 \sin \left (2 d x +2 c \right ) a^{4} A}{d}+\frac {127 \sin \left (2 d x +2 c \right ) B \,a^{4}}{64 d}\) \(208\)
parts \(\frac {\left (a^{4} A +4 B \,a^{4}\right ) \left (\frac {8}{3}+\cos ^{4}\left (d x +c \right )+\frac {4 \left (\cos ^{2}\left (d x +c \right )\right )}{3}\right ) \sin \left (d x +c \right )}{5 d}+\frac {\left (4 a^{4} A +B \,a^{4}\right ) \left (\frac {\cos \left (d x +c \right ) \sin \left (d x +c \right )}{2}+\frac {d x}{2}+\frac {c}{2}\right )}{d}+\frac {\left (4 a^{4} A +6 B \,a^{4}\right ) \left (\frac {\left (\cos ^{3}\left (d x +c \right )+\frac {3 \cos \left (d x +c \right )}{2}\right ) \sin \left (d x +c \right )}{4}+\frac {3 d x}{8}+\frac {3 c}{8}\right )}{d}+\frac {\left (6 a^{4} A +4 B \,a^{4}\right ) \left (2+\cos ^{2}\left (d x +c \right )\right ) \sin \left (d x +c \right )}{3 d}+\frac {B \,a^{4} \left (\frac {\left (\cos ^{5}\left (d x +c \right )+\frac {5 \left (\cos ^{3}\left (d x +c \right )\right )}{4}+\frac {15 \cos \left (d x +c \right )}{8}\right ) \sin \left (d x +c \right )}{6}+\frac {5 d x}{16}+\frac {5 c}{16}\right )}{d}+\frac {\sin \left (d x +c \right ) a^{4} A}{d}\) \(232\)
derivativedivides \(\frac {\frac {a^{4} A \left (\frac {8}{3}+\cos ^{4}\left (d x +c \right )+\frac {4 \left (\cos ^{2}\left (d x +c \right )\right )}{3}\right ) \sin \left (d x +c \right )}{5}+B \,a^{4} \left (\frac {\left (\cos ^{5}\left (d x +c \right )+\frac {5 \left (\cos ^{3}\left (d x +c \right )\right )}{4}+\frac {15 \cos \left (d x +c \right )}{8}\right ) \sin \left (d x +c \right )}{6}+\frac {5 d x}{16}+\frac {5 c}{16}\right )+4 a^{4} A \left (\frac {\left (\cos ^{3}\left (d x +c \right )+\frac {3 \cos \left (d x +c \right )}{2}\right ) \sin \left (d x +c \right )}{4}+\frac {3 d x}{8}+\frac {3 c}{8}\right )+\frac {4 B \,a^{4} \left (\frac {8}{3}+\cos ^{4}\left (d x +c \right )+\frac {4 \left (\cos ^{2}\left (d x +c \right )\right )}{3}\right ) \sin \left (d x +c \right )}{5}+2 a^{4} A \left (2+\cos ^{2}\left (d x +c \right )\right ) \sin \left (d x +c \right )+6 B \,a^{4} \left (\frac {\left (\cos ^{3}\left (d x +c \right )+\frac {3 \cos \left (d x +c \right )}{2}\right ) \sin \left (d x +c \right )}{4}+\frac {3 d x}{8}+\frac {3 c}{8}\right )+4 a^{4} A \left (\frac {\cos \left (d x +c \right ) \sin \left (d x +c \right )}{2}+\frac {d x}{2}+\frac {c}{2}\right )+\frac {4 B \,a^{4} \left (2+\cos ^{2}\left (d x +c \right )\right ) \sin \left (d x +c \right )}{3}+a^{4} A \sin \left (d x +c \right )+B \,a^{4} \left (\frac {\cos \left (d x +c \right ) \sin \left (d x +c \right )}{2}+\frac {d x}{2}+\frac {c}{2}\right )}{d}\) \(306\)
default \(\frac {\frac {a^{4} A \left (\frac {8}{3}+\cos ^{4}\left (d x +c \right )+\frac {4 \left (\cos ^{2}\left (d x +c \right )\right )}{3}\right ) \sin \left (d x +c \right )}{5}+B \,a^{4} \left (\frac {\left (\cos ^{5}\left (d x +c \right )+\frac {5 \left (\cos ^{3}\left (d x +c \right )\right )}{4}+\frac {15 \cos \left (d x +c \right )}{8}\right ) \sin \left (d x +c \right )}{6}+\frac {5 d x}{16}+\frac {5 c}{16}\right )+4 a^{4} A \left (\frac {\left (\cos ^{3}\left (d x +c \right )+\frac {3 \cos \left (d x +c \right )}{2}\right ) \sin \left (d x +c \right )}{4}+\frac {3 d x}{8}+\frac {3 c}{8}\right )+\frac {4 B \,a^{4} \left (\frac {8}{3}+\cos ^{4}\left (d x +c \right )+\frac {4 \left (\cos ^{2}\left (d x +c \right )\right )}{3}\right ) \sin \left (d x +c \right )}{5}+2 a^{4} A \left (2+\cos ^{2}\left (d x +c \right )\right ) \sin \left (d x +c \right )+6 B \,a^{4} \left (\frac {\left (\cos ^{3}\left (d x +c \right )+\frac {3 \cos \left (d x +c \right )}{2}\right ) \sin \left (d x +c \right )}{4}+\frac {3 d x}{8}+\frac {3 c}{8}\right )+4 a^{4} A \left (\frac {\cos \left (d x +c \right ) \sin \left (d x +c \right )}{2}+\frac {d x}{2}+\frac {c}{2}\right )+\frac {4 B \,a^{4} \left (2+\cos ^{2}\left (d x +c \right )\right ) \sin \left (d x +c \right )}{3}+a^{4} A \sin \left (d x +c \right )+B \,a^{4} \left (\frac {\cos \left (d x +c \right ) \sin \left (d x +c \right )}{2}+\frac {d x}{2}+\frac {c}{2}\right )}{d}\) \(306\)
norman \(\frac {\frac {7 a^{4} \left (8 A +7 B \right ) x}{16}+\frac {281 a^{4} \left (8 A +7 B \right ) \left (\tan ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{20 d}+\frac {231 a^{4} \left (8 A +7 B \right ) \left (\tan ^{7}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{20 d}+\frac {119 a^{4} \left (8 A +7 B \right ) \left (\tan ^{9}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{24 d}+\frac {7 a^{4} \left (8 A +7 B \right ) \left (\tan ^{11}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{8 d}+\frac {21 a^{4} \left (8 A +7 B \right ) x \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{8}+\frac {105 a^{4} \left (8 A +7 B \right ) x \left (\tan ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{16}+\frac {35 a^{4} \left (8 A +7 B \right ) x \left (\tan ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{4}+\frac {105 a^{4} \left (8 A +7 B \right ) x \left (\tan ^{8}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{16}+\frac {21 a^{4} \left (8 A +7 B \right ) x \left (\tan ^{10}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{8}+\frac {7 a^{4} \left (8 A +7 B \right ) x \left (\tan ^{12}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{16}+\frac {a^{4} \left (200 A +207 B \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{8 d}+\frac {a^{4} \left (1864 A +1471 B \right ) \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{24 d}}{\left (1+\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )^{6}}\) \(329\)

input
int(cos(d*x+c)*(a+cos(d*x+c)*a)^4*(A+B*cos(d*x+c)),x,method=_RETURNVERBOSE 
)
 
output
1/8*((16*A+127/8*B)*sin(2*d*x+2*c)+(29/6*A+6*B)*sin(3*d*x+3*c)+(A+15/8*B)* 
sin(4*d*x+4*c)+(1/10*A+2/5*B)*sin(5*d*x+5*c)+1/24*B*sin(6*d*x+6*c)+(49*A+4 
4*B)*sin(d*x+c)+28*d*x*(A+7/8*B))*a^4/d
 
3.1.29.5 Fricas [A] (verification not implemented)

Time = 0.31 (sec) , antiderivative size = 130, normalized size of antiderivative = 0.70 \[ \int \cos (c+d x) (a+a \cos (c+d x))^4 (A+B \cos (c+d x)) \, dx=\frac {105 \, {\left (8 \, A + 7 \, B\right )} a^{4} d x + {\left (40 \, B a^{4} \cos \left (d x + c\right )^{5} + 48 \, {\left (A + 4 \, B\right )} a^{4} \cos \left (d x + c\right )^{4} + 10 \, {\left (24 \, A + 41 \, B\right )} a^{4} \cos \left (d x + c\right )^{3} + 32 \, {\left (17 \, A + 18 \, B\right )} a^{4} \cos \left (d x + c\right )^{2} + 105 \, {\left (8 \, A + 7 \, B\right )} a^{4} \cos \left (d x + c\right ) + 16 \, {\left (83 \, A + 72 \, B\right )} a^{4}\right )} \sin \left (d x + c\right )}{240 \, d} \]

input
integrate(cos(d*x+c)*(a+a*cos(d*x+c))^4*(A+B*cos(d*x+c)),x, algorithm="fri 
cas")
 
output
1/240*(105*(8*A + 7*B)*a^4*d*x + (40*B*a^4*cos(d*x + c)^5 + 48*(A + 4*B)*a 
^4*cos(d*x + c)^4 + 10*(24*A + 41*B)*a^4*cos(d*x + c)^3 + 32*(17*A + 18*B) 
*a^4*cos(d*x + c)^2 + 105*(8*A + 7*B)*a^4*cos(d*x + c) + 16*(83*A + 72*B)* 
a^4)*sin(d*x + c))/d
 
3.1.29.6 Sympy [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 765 vs. \(2 (170) = 340\).

Time = 0.43 (sec) , antiderivative size = 765, normalized size of antiderivative = 4.14 \[ \int \cos (c+d x) (a+a \cos (c+d x))^4 (A+B \cos (c+d x)) \, dx=\begin {cases} \frac {3 A a^{4} x \sin ^{4}{\left (c + d x \right )}}{2} + 3 A a^{4} x \sin ^{2}{\left (c + d x \right )} \cos ^{2}{\left (c + d x \right )} + 2 A a^{4} x \sin ^{2}{\left (c + d x \right )} + \frac {3 A a^{4} x \cos ^{4}{\left (c + d x \right )}}{2} + 2 A a^{4} x \cos ^{2}{\left (c + d x \right )} + \frac {8 A a^{4} \sin ^{5}{\left (c + d x \right )}}{15 d} + \frac {4 A a^{4} \sin ^{3}{\left (c + d x \right )} \cos ^{2}{\left (c + d x \right )}}{3 d} + \frac {3 A a^{4} \sin ^{3}{\left (c + d x \right )} \cos {\left (c + d x \right )}}{2 d} + \frac {4 A a^{4} \sin ^{3}{\left (c + d x \right )}}{d} + \frac {A a^{4} \sin {\left (c + d x \right )} \cos ^{4}{\left (c + d x \right )}}{d} + \frac {5 A a^{4} \sin {\left (c + d x \right )} \cos ^{3}{\left (c + d x \right )}}{2 d} + \frac {6 A a^{4} \sin {\left (c + d x \right )} \cos ^{2}{\left (c + d x \right )}}{d} + \frac {2 A a^{4} \sin {\left (c + d x \right )} \cos {\left (c + d x \right )}}{d} + \frac {A a^{4} \sin {\left (c + d x \right )}}{d} + \frac {5 B a^{4} x \sin ^{6}{\left (c + d x \right )}}{16} + \frac {15 B a^{4} x \sin ^{4}{\left (c + d x \right )} \cos ^{2}{\left (c + d x \right )}}{16} + \frac {9 B a^{4} x \sin ^{4}{\left (c + d x \right )}}{4} + \frac {15 B a^{4} x \sin ^{2}{\left (c + d x \right )} \cos ^{4}{\left (c + d x \right )}}{16} + \frac {9 B a^{4} x \sin ^{2}{\left (c + d x \right )} \cos ^{2}{\left (c + d x \right )}}{2} + \frac {B a^{4} x \sin ^{2}{\left (c + d x \right )}}{2} + \frac {5 B a^{4} x \cos ^{6}{\left (c + d x \right )}}{16} + \frac {9 B a^{4} x \cos ^{4}{\left (c + d x \right )}}{4} + \frac {B a^{4} x \cos ^{2}{\left (c + d x \right )}}{2} + \frac {5 B a^{4} \sin ^{5}{\left (c + d x \right )} \cos {\left (c + d x \right )}}{16 d} + \frac {32 B a^{4} \sin ^{5}{\left (c + d x \right )}}{15 d} + \frac {5 B a^{4} \sin ^{3}{\left (c + d x \right )} \cos ^{3}{\left (c + d x \right )}}{6 d} + \frac {16 B a^{4} \sin ^{3}{\left (c + d x \right )} \cos ^{2}{\left (c + d x \right )}}{3 d} + \frac {9 B a^{4} \sin ^{3}{\left (c + d x \right )} \cos {\left (c + d x \right )}}{4 d} + \frac {8 B a^{4} \sin ^{3}{\left (c + d x \right )}}{3 d} + \frac {11 B a^{4} \sin {\left (c + d x \right )} \cos ^{5}{\left (c + d x \right )}}{16 d} + \frac {4 B a^{4} \sin {\left (c + d x \right )} \cos ^{4}{\left (c + d x \right )}}{d} + \frac {15 B a^{4} \sin {\left (c + d x \right )} \cos ^{3}{\left (c + d x \right )}}{4 d} + \frac {4 B a^{4} \sin {\left (c + d x \right )} \cos ^{2}{\left (c + d x \right )}}{d} + \frac {B a^{4} \sin {\left (c + d x \right )} \cos {\left (c + d x \right )}}{2 d} & \text {for}\: d \neq 0 \\x \left (A + B \cos {\left (c \right )}\right ) \left (a \cos {\left (c \right )} + a\right )^{4} \cos {\left (c \right )} & \text {otherwise} \end {cases} \]

input
integrate(cos(d*x+c)*(a+a*cos(d*x+c))**4*(A+B*cos(d*x+c)),x)
 
output
Piecewise((3*A*a**4*x*sin(c + d*x)**4/2 + 3*A*a**4*x*sin(c + d*x)**2*cos(c 
 + d*x)**2 + 2*A*a**4*x*sin(c + d*x)**2 + 3*A*a**4*x*cos(c + d*x)**4/2 + 2 
*A*a**4*x*cos(c + d*x)**2 + 8*A*a**4*sin(c + d*x)**5/(15*d) + 4*A*a**4*sin 
(c + d*x)**3*cos(c + d*x)**2/(3*d) + 3*A*a**4*sin(c + d*x)**3*cos(c + d*x) 
/(2*d) + 4*A*a**4*sin(c + d*x)**3/d + A*a**4*sin(c + d*x)*cos(c + d*x)**4/ 
d + 5*A*a**4*sin(c + d*x)*cos(c + d*x)**3/(2*d) + 6*A*a**4*sin(c + d*x)*co 
s(c + d*x)**2/d + 2*A*a**4*sin(c + d*x)*cos(c + d*x)/d + A*a**4*sin(c + d* 
x)/d + 5*B*a**4*x*sin(c + d*x)**6/16 + 15*B*a**4*x*sin(c + d*x)**4*cos(c + 
 d*x)**2/16 + 9*B*a**4*x*sin(c + d*x)**4/4 + 15*B*a**4*x*sin(c + d*x)**2*c 
os(c + d*x)**4/16 + 9*B*a**4*x*sin(c + d*x)**2*cos(c + d*x)**2/2 + B*a**4* 
x*sin(c + d*x)**2/2 + 5*B*a**4*x*cos(c + d*x)**6/16 + 9*B*a**4*x*cos(c + d 
*x)**4/4 + B*a**4*x*cos(c + d*x)**2/2 + 5*B*a**4*sin(c + d*x)**5*cos(c + d 
*x)/(16*d) + 32*B*a**4*sin(c + d*x)**5/(15*d) + 5*B*a**4*sin(c + d*x)**3*c 
os(c + d*x)**3/(6*d) + 16*B*a**4*sin(c + d*x)**3*cos(c + d*x)**2/(3*d) + 9 
*B*a**4*sin(c + d*x)**3*cos(c + d*x)/(4*d) + 8*B*a**4*sin(c + d*x)**3/(3*d 
) + 11*B*a**4*sin(c + d*x)*cos(c + d*x)**5/(16*d) + 4*B*a**4*sin(c + d*x)* 
cos(c + d*x)**4/d + 15*B*a**4*sin(c + d*x)*cos(c + d*x)**3/(4*d) + 4*B*a** 
4*sin(c + d*x)*cos(c + d*x)**2/d + B*a**4*sin(c + d*x)*cos(c + d*x)/(2*d), 
 Ne(d, 0)), (x*(A + B*cos(c))*(a*cos(c) + a)**4*cos(c), True))
 
3.1.29.7 Maxima [A] (verification not implemented)

Time = 0.24 (sec) , antiderivative size = 297, normalized size of antiderivative = 1.61 \[ \int \cos (c+d x) (a+a \cos (c+d x))^4 (A+B \cos (c+d x)) \, dx=\frac {64 \, {\left (3 \, \sin \left (d x + c\right )^{5} - 10 \, \sin \left (d x + c\right )^{3} + 15 \, \sin \left (d x + c\right )\right )} A a^{4} - 1920 \, {\left (\sin \left (d x + c\right )^{3} - 3 \, \sin \left (d x + c\right )\right )} A a^{4} + 120 \, {\left (12 \, d x + 12 \, c + \sin \left (4 \, d x + 4 \, c\right ) + 8 \, \sin \left (2 \, d x + 2 \, c\right )\right )} A a^{4} + 960 \, {\left (2 \, d x + 2 \, c + \sin \left (2 \, d x + 2 \, c\right )\right )} A a^{4} + 256 \, {\left (3 \, \sin \left (d x + c\right )^{5} - 10 \, \sin \left (d x + c\right )^{3} + 15 \, \sin \left (d x + c\right )\right )} B a^{4} - 5 \, {\left (4 \, \sin \left (2 \, d x + 2 \, c\right )^{3} - 60 \, d x - 60 \, c - 9 \, \sin \left (4 \, d x + 4 \, c\right ) - 48 \, \sin \left (2 \, d x + 2 \, c\right )\right )} B a^{4} - 1280 \, {\left (\sin \left (d x + c\right )^{3} - 3 \, \sin \left (d x + c\right )\right )} B a^{4} + 180 \, {\left (12 \, d x + 12 \, c + \sin \left (4 \, d x + 4 \, c\right ) + 8 \, \sin \left (2 \, d x + 2 \, c\right )\right )} B a^{4} + 240 \, {\left (2 \, d x + 2 \, c + \sin \left (2 \, d x + 2 \, c\right )\right )} B a^{4} + 960 \, A a^{4} \sin \left (d x + c\right )}{960 \, d} \]

input
integrate(cos(d*x+c)*(a+a*cos(d*x+c))^4*(A+B*cos(d*x+c)),x, algorithm="max 
ima")
 
output
1/960*(64*(3*sin(d*x + c)^5 - 10*sin(d*x + c)^3 + 15*sin(d*x + c))*A*a^4 - 
 1920*(sin(d*x + c)^3 - 3*sin(d*x + c))*A*a^4 + 120*(12*d*x + 12*c + sin(4 
*d*x + 4*c) + 8*sin(2*d*x + 2*c))*A*a^4 + 960*(2*d*x + 2*c + sin(2*d*x + 2 
*c))*A*a^4 + 256*(3*sin(d*x + c)^5 - 10*sin(d*x + c)^3 + 15*sin(d*x + c))* 
B*a^4 - 5*(4*sin(2*d*x + 2*c)^3 - 60*d*x - 60*c - 9*sin(4*d*x + 4*c) - 48* 
sin(2*d*x + 2*c))*B*a^4 - 1280*(sin(d*x + c)^3 - 3*sin(d*x + c))*B*a^4 + 1 
80*(12*d*x + 12*c + sin(4*d*x + 4*c) + 8*sin(2*d*x + 2*c))*B*a^4 + 240*(2* 
d*x + 2*c + sin(2*d*x + 2*c))*B*a^4 + 960*A*a^4*sin(d*x + c))/d
 
3.1.29.8 Giac [A] (verification not implemented)

Time = 0.34 (sec) , antiderivative size = 166, normalized size of antiderivative = 0.90 \[ \int \cos (c+d x) (a+a \cos (c+d x))^4 (A+B \cos (c+d x)) \, dx=\frac {B a^{4} \sin \left (6 \, d x + 6 \, c\right )}{192 \, d} + \frac {7}{16} \, {\left (8 \, A a^{4} + 7 \, B a^{4}\right )} x + \frac {{\left (A a^{4} + 4 \, B a^{4}\right )} \sin \left (5 \, d x + 5 \, c\right )}{80 \, d} + \frac {{\left (8 \, A a^{4} + 15 \, B a^{4}\right )} \sin \left (4 \, d x + 4 \, c\right )}{64 \, d} + \frac {{\left (29 \, A a^{4} + 36 \, B a^{4}\right )} \sin \left (3 \, d x + 3 \, c\right )}{48 \, d} + \frac {{\left (128 \, A a^{4} + 127 \, B a^{4}\right )} \sin \left (2 \, d x + 2 \, c\right )}{64 \, d} + \frac {{\left (49 \, A a^{4} + 44 \, B a^{4}\right )} \sin \left (d x + c\right )}{8 \, d} \]

input
integrate(cos(d*x+c)*(a+a*cos(d*x+c))^4*(A+B*cos(d*x+c)),x, algorithm="gia 
c")
 
output
1/192*B*a^4*sin(6*d*x + 6*c)/d + 7/16*(8*A*a^4 + 7*B*a^4)*x + 1/80*(A*a^4 
+ 4*B*a^4)*sin(5*d*x + 5*c)/d + 1/64*(8*A*a^4 + 15*B*a^4)*sin(4*d*x + 4*c) 
/d + 1/48*(29*A*a^4 + 36*B*a^4)*sin(3*d*x + 3*c)/d + 1/64*(128*A*a^4 + 127 
*B*a^4)*sin(2*d*x + 2*c)/d + 1/8*(49*A*a^4 + 44*B*a^4)*sin(d*x + c)/d
 
3.1.29.9 Mupad [B] (verification not implemented)

Time = 1.70 (sec) , antiderivative size = 316, normalized size of antiderivative = 1.71 \[ \int \cos (c+d x) (a+a \cos (c+d x))^4 (A+B \cos (c+d x)) \, dx=\frac {\left (7\,A\,a^4+\frac {49\,B\,a^4}{8}\right )\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^{11}+\left (\frac {119\,A\,a^4}{3}+\frac {833\,B\,a^4}{24}\right )\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^9+\left (\frac {462\,A\,a^4}{5}+\frac {1617\,B\,a^4}{20}\right )\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^7+\left (\frac {562\,A\,a^4}{5}+\frac {1967\,B\,a^4}{20}\right )\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^5+\left (\frac {233\,A\,a^4}{3}+\frac {1471\,B\,a^4}{24}\right )\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3+\left (25\,A\,a^4+\frac {207\,B\,a^4}{8}\right )\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}{d\,\left ({\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^{12}+6\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^{10}+15\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^8+20\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^6+15\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4+6\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2+1\right )}-\frac {7\,a^4\,\left (8\,A+7\,B\right )\,\left (\mathrm {atan}\left (\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\right )-\frac {d\,x}{2}\right )}{8\,d}+\frac {7\,a^4\,\mathrm {atan}\left (\frac {7\,a^4\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\,\left (8\,A+7\,B\right )}{8\,\left (7\,A\,a^4+\frac {49\,B\,a^4}{8}\right )}\right )\,\left (8\,A+7\,B\right )}{8\,d} \]

input
int(cos(c + d*x)*(A + B*cos(c + d*x))*(a + a*cos(c + d*x))^4,x)
 
output
(tan(c/2 + (d*x)/2)*(25*A*a^4 + (207*B*a^4)/8) + tan(c/2 + (d*x)/2)^11*(7* 
A*a^4 + (49*B*a^4)/8) + tan(c/2 + (d*x)/2)^9*((119*A*a^4)/3 + (833*B*a^4)/ 
24) + tan(c/2 + (d*x)/2)^3*((233*A*a^4)/3 + (1471*B*a^4)/24) + tan(c/2 + ( 
d*x)/2)^7*((462*A*a^4)/5 + (1617*B*a^4)/20) + tan(c/2 + (d*x)/2)^5*((562*A 
*a^4)/5 + (1967*B*a^4)/20))/(d*(6*tan(c/2 + (d*x)/2)^2 + 15*tan(c/2 + (d*x 
)/2)^4 + 20*tan(c/2 + (d*x)/2)^6 + 15*tan(c/2 + (d*x)/2)^8 + 6*tan(c/2 + ( 
d*x)/2)^10 + tan(c/2 + (d*x)/2)^12 + 1)) - (7*a^4*(8*A + 7*B)*(atan(tan(c/ 
2 + (d*x)/2)) - (d*x)/2))/(8*d) + (7*a^4*atan((7*a^4*tan(c/2 + (d*x)/2)*(8 
*A + 7*B))/(8*(7*A*a^4 + (49*B*a^4)/8)))*(8*A + 7*B))/(8*d)